Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
biorxiv; 2024.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2024.04.04.588067

RESUMEN

Appropriate cellular recognition of viruses is essential for the generation of effective innate and adaptive antiviral immunity. Viral sensors and their signalling components thus provide a crucial first line of host defence. Many exhibit subcellular relocalisation upon activation, triggering expression of interferon and antiviral genes. To identify novel signalling factors we analysed protein relocalisation on a global scale during viral infection. CREB Regulated Transcription Coactivators-2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon a diversity of viral stimuli, in diverse cell types. This movement was depended on Mitochondrial Antiviral Signalling Protein (MAVS), cyclo-oxygenase proteins and protein kinase A. We identify a key effect of transcription stimulated by CRTC2/3 translocation as production of the pro-fibrogenic cytokine interleukin-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2.


Asunto(s)
Fibrosis
2.
biorxiv; 2024.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2024.04.03.587929

RESUMEN

The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.


Asunto(s)
Fibrosis , Enfermedades Pulmonares , COVID-19
3.
preprints.org; 2024.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202404.0312.v1

RESUMEN

Background: Post-acute sequelae of SARS-CoV-2 infection (PASC) is a complicated disease that affects millions of people all over the world. Previous studies have shown that PASC impacts 10% of SARS-CoV-2 infected patients of which 50-70% are hospitalized. It has also been shown that 10-12% of those vaccinated against COVID-19 were affected with PASC and its complications. The severity and the later development of PASC symptoms is positively associated with the early intensity of the infection. Results: The generated health complications caused by PASC involve a vast variety of organ systems. Patients affected by PASC have been diagnosed with neuropsychiatric and neurological symptoms. Cardiovascular system also has been involved and several diseases such as myocarditis, pericarditis, and coronary artery diseases were reported. Chronic hematological problems such as thrombotic endothelialitis and hypercoagulability were described as a condition that could increase the risk of clotting disorders and coagulopathy in PASC patients. Chest pain, breathlessness, and cough in PASC patients were associated with respiratory system in long COVID-19 causing respiratory distress syndrome. The observed immune complications were notable, involving several diseases. Renal system also was impacted and result in raising the risk of diseases such as thrombotic issues, fibrosis, and sepsis. Endocrine gland malfunction can lead to diabetes, thyroiditis, and male infertility. Symptoms such as diarrhea, nausea, loss of appetite and taste were also among reported observations due to several gastrointestinal disorders. Skin abnormalities might be an indication of infection and long-term implications such as persistent cutaneous complaints were linked to PASC. Conclusions: Long COVID is a multidimensional syndrome with considerable public health implications, affecting several physiological systems and demanding thorough medical therapy as well as more study to address its underlying causes and long-term effects.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome de Dificultad Respiratoria , Síndromes Neoplásicos Hereditarios , COVID-19 , Trastornos de Alimentación y de la Ingestión de Alimentos , Tiroiditis , Dolor en el Pecho , Síndrome Respiratorio Agudo Grave , Diabetes Mellitus , Infertilidad Masculina , Miocarditis , Enfermedades Gastrointestinales , Fibrosis , Pericarditis , Trombofilia , Trastornos Mentales , Sepsis , Anomalías Cutáneas , Trastornos de la Coagulación Sanguínea , Náusea , Tos , Trombosis , Enfermedad de la Arteria Coronaria , Diarrea
4.
medrxiv; 2024.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2024.03.18.24304157

RESUMEN

Critically ill COVID-19 patients have a high degree of acute kidney injury which develops in up to 85% of patients. We have previously shown that circulating levels of angiopoietin-2 increased in critically ill COVID-19 patients correlated to kidney injury, coagulopathy, and mortality. Furthermore, our experiments showed a causal effect on coagulopathy from angiopoietin-2 binding and inhibition of thrombomodulin mediated anticoagulation. In the current study we hypothesize that renal microthrombi may be a mechanism for reduced renal function in critically ill COVID-19 patients, and that local dysregulation of thrombomodulin and angiopoietin-2 may be involved. To investigate our hypothesis, we utilized postmortem kidney tissue from seven COVID-19 patients treated at the intensive care unit. We evaluated kidney function, thrombosis, tubular injury, fibrosis, glomerulosclerosis, glomerular size as well as renal expression of thrombomodulin and angiopoietin-2. Proximity ligation assay was utilized to evaluate the presence of angiopoietin-2 binding to thrombomodulin. Normal kidney tissue came from the healthy part of six nephrectomies due to cancer. Our experiments show renal thrombosis in 6/7 COVID-19 patients, on average 14.7 (6.9-22.5) thrombi per mm2. Most COVID-19 kidneys had extensive kidney injury, especially tubular necrosis, but also glomerular enlargement, glomerulosclerosis, and tubulointerstitial fibrosis which in some cases most likely resulted from underlying disease. Thrombomodulin expression was reduced in glomeruli and peritubular capillaries in kidneys from COVID-19 patients, whereas no change was found for angiopoietin-2. In summary, our study describes a high degree of acute renal failure, renal microthrombosis, and loss of thrombomodulin in postmortem tissue from critically ill COVID-19 patients.


Asunto(s)
Fibrosis , Psitacosis , Trastornos de la Coagulación Sanguínea , Enfermedad Crítica , Carcinoma de Células Renales , Trombosis , Neoplasias , Enfermedades Renales , Glomerulonefritis , Lesión Renal Aguda , COVID-19 , Defectos Congénitos del Transporte Tubular Renal
5.
researchsquare; 2024.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-4131121.v1

RESUMEN

SARS-CoV-2 has become a global public health problem. Acute respiratory distress syndrome (ARDS) is the leading cause of death due to the SARS-CoV-2 infection. Pulmonary fibrosis (PF) is a severe and frequently reported COVID-19 sequela. In this study, an in vitro model of ARDS and PF caused by SARS-CoV-2 was established in MH-S, THP-1, and MRC-5 cells using pseudo-SARS-CoV-2 (PSCV). Expression of proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and HIF-1α was increased in PSCV-infected MH-S and THP-1 cells, ARDS model, consistent with other profiling data in SARS-CoV-2-infected patients have been reported. Hypoxia-inducible factor-1 alpha (HIF-1α) siRNA and cobalt chloride were tested using this in vitro model. Furthermore, apigetrin, a glycoside bioactive dietary flavonoid derived from several plants, including Crataegus pinnatifida, which is reported to be a HIF-1α inhibitor, was tested in this in vitro model [1]. Apigetrin significantly reduced the increased inflammatory cytokine (IL-6, IL-1β, and TNF-α) expression and secretion by PSCV in MH-S and THP-1 cells. Apigetrin inhibited the binding of the SARS-CoV-2 spike protein RBD to the ACE2 protein. An in vitro model of PF induced by SARS-CoV-2 was produced using a conditioned medium of THP-1 and MH-S cells that were PSCV-infected (CMPSCV) into MRC-5 cells. In a PF model, CMPSCV treatment of THP-1 and MH-S cells increased cell growth, migration, and collagen synthesis in MRC-5 cells. In contrast, apigetrin suppressed the increase in cell growth, migration, and collagen synthesis induced by CMPSCV in THP-1 and MH-S MRC-5 cells. Also, compared to control, fibrosis-related proteins (CTGF, COLA1, α-SMA, and HIF-1α) levels were over two-fold higher in CMPSV-treated MRC-5 cells. Apigetrin decreased protein levels in CMPSCV-treated MRC-5 cells. Thus, our data suggest that hypoxia-inducible factor-1 alpha (HIF-1α) might be a novel target for SARS-CoV-2 sequela therapies and apigetrin, representative of HIF-1alpha inhibitor, exerts anti-inflammatory and PF effects in PSCV-treated MH-S, THP-1, and CMPVSC-treated MRC-5 cells. These findings indicate that HIF-1α inhibition and apigetrin would have a potential value in controlling SARS-CoV-2-related diseases.


Asunto(s)
Fibrosis , Síndrome de Dificultad Respiratoria , Síndrome Respiratorio Agudo Grave , Hipoxia , Muerte , COVID-19 , Fibrosis Pulmonar
6.
researchsquare; 2024.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3977103.v1

RESUMEN

Background: Cholangiopathy has been described in survivors of severe COVID-19, presenting significant clinical parallels to the pre-pandemic condition of secondary sclerosing cholangitis in critically ill patients (SSC-CIP).  Aim: Herein, we examined the liver histopathology of individuals with persistent cholestasis following severe COVID-19.  Methods: Post-COVID-19 cholestasis liver samples were subjected to routine staining techniques and cytokeratin 7 immunostaining, and the portal and parenchymal changes were semi-quantitatively analyzed.  Results: All ten patients, five men, median age 56, interquartile range (IQR) 51–60, requiring mechanical ventilation. The median and IQR liver enzyme concentrations proximal to biopsy were in IU/L: ALP, 605 (390–1,105); GGT, 925 (776–2,169); ALT, 92 (86–110); AST, 90 (68–108); and bilirubin, 3 (1–6) mg/dL. Imaging revealed intrahepatic bile duct anomalies and biliary casts. Biopsies were performed at a median of 203 (150–249) days after molecular confirmation of infection. Portal and periportal fibrosis, moderate-to-severe ductular proliferation, and bile duct dystrophy were found in all patients, while hepatocyte biliary metaplasia was observed in all tested cases. Mild-to-severe parenchymal cholestasis and bile plugs were observed in nine and six cases. Mild swelling of the arteriolar endothelial cells was observed in five patients. A thrombus in a small portal vein branch and mild periductal fibrosis were observed in one case each. One patient developed multiple small biliary infarctions. Ductopenia was not observed in any patient.  Conclusions: The alterations were similar to those observed in SSC-CIP; however, pronounced swelling of endothelial cells, necrosis of the vessel walls, and thrombosis in small vessels were notable.


Asunto(s)
Fibrosis , Necrosis , Trombosis de la Vena , Enfermedad Crítica , Trombosis , COVID-19 , Neoplasias del Sistema Biliar , Colestasis , Colangitis , Colestasis Intrahepática
7.
medrxiv; 2024.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2024.02.13.24302781

RESUMEN

RATIONALE: Persistent cough and dyspnea are prominent features of post-acute sequelae of SARS-CoV-2 (termed 'Long COVID'); however, physiologic measures and clinical features associated with these pulmonary symptoms remain poorly defined. OBJECTIVES: Using longitudinal pulmonary function testing (PFTs) and CT imaging, this study aimed to identify the characteristics and determinants of pulmonary Long COVID. METHODS: The University of Alabama at Birmingham Pulmonary Long COVID cohort was utilized to characterize lung defects in patients with persistent pulmonary symptoms after resolution primary COVID infection. Longitudinal PFTs including total lung capacity (TLC) and diffusion limitation of carbon monoxide (DLCO) were used to evaluate restriction and diffusion impairment over time in this cohort. Analysis of chest CT imaging was used to phenotype the pulmonary Long COVID pathology. Risk factors linked to development of pulmonary Long COVID were estimated using univariate and multivariate logistic regression models. MEASUREMENTS AND MAIN RESULTS: Longitudinal evaluation 929 patients with post-COVID pulmonary symptoms revealed diffusion impairment (DLCO ≤80%) and restriction (TLC ≤80%) in 51% of the cohort (n=479). In multivariable logistic regression analysis (adjusted odds ratio; aOR, 95% confidence interval [CI]), invasive mechanical ventilation during primary infection conferred the greatest increased odds of developing pulmonary Long COVID with diffusion impaired restriction (aOR=10.9 [4.09-28.6]). Finally, a sub-analysis of CT imaging identified evidence of fibrosis in this population. CONCLUSIONS: Persistent diffusion impaired restriction was identified as a key feature of pulmonary Long COVID. Subsequent clinical trials should leverage combined symptomatic and quantitative PFT measurements for more targeted enrollment of pulmonary Long COVID patients.


Asunto(s)
Fibrosis , Disnea , Enfermedades Pulmonares , Tos
8.
biorxiv; 2024.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2024.02.10.579717

RESUMEN

Host metabolic fitness is a critical determinant of infectious disease outcomes. In COVID-19, obesity and aging are major high-risk disease modifiers, although the underlying mechanism remains unknown. Here, we demonstrate that fatty acid binding protein 4 (FABP4), a critical regulator of metabolic dysfunction in these conditions, regulates SARS-CoV2 pathogenesis. Our study revealed that elevated FABP4 levels in COVID-19 patients strongly correlate with disease severity. In adipocytes and airway epithelial cells we found that loss of FABP4 function by genetic or pharmacological means impaired SARS-CoV2 replication and disrupted the formation of viral replication organelles. Furthermore, treatment of infected hamsters with FABP4 inhibitors alleviated lung damage and fibrosis and reduced lung viral titers. These results highlight a novel host factor critical for SARS-CoV2 infection and the therapeutic potential of FABP4-targeting agents in treating COVID-19 patients.


Asunto(s)
Fibrosis , Enfermedades Pulmonares , Infecciones , Enfermedades Metabólicas , Síndrome Respiratorio Agudo Grave , Enfermedades Transmisibles , Obesidad , COVID-19
9.
researchsquare; 2024.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3919495.v1

RESUMEN

Background Radiation-induced pulmonary fibrosis (RIPF) is a late-stage complication of therapeutic radiation, associated with poor prognosis and limited therapeutic options. Radiation-induced lung injury (RILI) is an early manifestation of RIPF, and intervention of RILI is an effective method for preventing long-term RIPF. Mesenchymal stem cell (MSC)-derived exosomes exhibit regenerative activity in injured lungs and are effective drug-delivery nanoparticles. SARS-CoV-2-S-RBD enables ACE2+ cell targeting of MSC extracellular vesicles. miR-486-5p is a multifunctional miRNA with angiogenic and anti-fibrotic activities and is enriched in MSC-derived exosomes. In this study, we investigated the therapeutic effects of miR-486-5p and SARS-COV-2-S-RBD-engineered MSC exosomes on RIPF in vitro and in vivo.Results Adenovirus-mediated gene modification led to the overexpression of miR-486-5p in umbilical cord MSCs (UC-MSCs), which further enriched miR-486-5p in UC-MSCs-derived exosomes. MiR-486-5p-engineered MSC exosomes (miR-486-MSC-Exo) promoted the proliferation and migration of irradiated MLE-12 cells in vitro and inhibited RILI in vivo. An in vitro assay revealed the occurrence of ferroptosis, a major form of cell death during radiation injury, indicated by the upregulated expression of fibrosis-related genes. miR-486-MSC-Exo effectively reversed these changes. MiR-486-MSC-Exo strongly reversed the upregulated expression of MLE-12 fibrosis-related genes induced by TGF in vitro and improved pathological fibrosis in the RIPF model in vivo. The distribution of RBD-VSVG-MSC exosomes labeled with DiR dye in hACE2CKI/CKI Sftpc-Cre+ mice demonstrated that the fluorescence of RBD-VSVG exosomes remained in the lungs for a long time. miR-486-RBD-MSC-exosomes significantly improved the survival rate and pathological changes in hACE2CKI/CKI Sftpc-Cre+ RIPF mice. Furthermore, miR-486-MSC-Exo exerted anti-fibrotic effects through targeted inhibition of SMAD2 and activation of Akt phosphorylation.Conclusions Here, miR-486-MSC-Exo inhibited lung injury and alleviated fibrosis in vivo and in vitro. Surface modification with COVID-S-RBD conferred engineered exosomes with the ability to target the lungs of animal models. The therapeutic effects of miR-486-5p and COVID-S-RBD-engineered MSC exosomes on RIPF were significantly enhanced. MSC-derived exosomes modified with recombinant COVID-S-RBD enabled targeted delivery of miR-486-5p, which is an effective approach for the treatment of RIPF.


Asunto(s)
Fibrosis , Traumatismos por Radiación , Enfermedades Pulmonares , Fibrosis Pulmonar
10.
arxiv; 2024.
Preprint en Inglés | PREPRINT-ARXIV | ID: ppzbmed-2401.15111v1

RESUMEN

Purpose: Limited studies exploring concrete methods or approaches to tackle and enhance model fairness in the radiology domain. Our proposed AI model utilizes supervised contrastive learning to minimize bias in CXR diagnosis. Materials and Methods: In this retrospective study, we evaluated our proposed method on two datasets: the Medical Imaging and Data Resource Center (MIDRC) dataset with 77,887 CXR images from 27,796 patients collected as of April 20, 2023 for COVID-19 diagnosis, and the NIH Chest X-ray (NIH-CXR) dataset with 112,120 CXR images from 30,805 patients collected between 1992 and 2015. In the NIH-CXR dataset, thoracic abnormalities include atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thickening, or hernia. Our proposed method utilizes supervised contrastive learning with carefully selected positive and negative samples to generate fair image embeddings, which are fine-tuned for subsequent tasks to reduce bias in chest X-ray (CXR) diagnosis. We evaluated the methods using the marginal AUC difference ($\delta$ mAUC). Results: The proposed model showed a significant decrease in bias across all subgroups when compared to the baseline models, as evidenced by a paired T-test (p<0.0001). The $\delta$ mAUC obtained by our method were 0.0116 (95\% CI, 0.0110-0.0123), 0.2102 (95% CI, 0.2087-0.2118), and 0.1000 (95\% CI, 0.0988-0.1011) for sex, race, and age on MIDRC, and 0.0090 (95\% CI, 0.0082-0.0097) for sex and 0.0512 (95% CI, 0.0512-0.0532) for age on NIH-CXR, respectively. Conclusion: Employing supervised contrastive learning can mitigate bias in CXR diagnosis, addressing concerns of fairness and reliability in deep learning-based diagnostic methods.


Asunto(s)
Fibrosis , Enfermedades Pleurales , Hernia , Dolor en el Pecho , Neumonía , Enfermedades Torácicas , Enfisema , COVID-19 , Cardiomegalia , Edema
11.
biorxiv; 2024.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2024.01.21.576509

RESUMEN

Pulmonary fibrosis is an increasing and major cause of death worldwide. Understanding the cellular and molecular mechanisms underlying the pathophysiology of lung fibrosis may lead to urgently needed diagnostic and prognostic strategies for the disease. SOX9 is a core transcription factor that has been associated with fibrotic disease, however its role and regulation in acute lung injury and/or fibrosis have not been fully defined. In this study we apply a hypothesis based approach to uncover unique SOX9-protein signatures associated with both acute lung injury and fibrotic progression. Using in vivo models of lung injury in the presence or absence of SOX9, our study shows SOX9 is essential to the damage associated response of alveolar epithelial cells from an early time-point in lung injury. In parallel, as disease progresses, SOX9 is responsible for regulating tissue damaging ECM production from pro-fibrotic fibroblasts. In determining the in vivo role of SOX9 we identified secreted ECM components downstream of SOX9 as markers of acute lung injury and fibrosis. To underscore the translational potential of our SOX9-regulated markers, we analysed serum samples from acute COVID19, post COVID19 and idiopathic pulmonary fibrosis (IPF) patient cohorts. Our hypothesis driven SOX9-panels showed significant capability in all cohorts at identifying patients who had poor disease outcomes. This study shows that SOX9 is functionally critical to disease in acute lung injury and pulmonary fibrosis and its regulated pathways have diagnostic, prognostic and therapeutic potential in both COVID19 and IPF disease.


Asunto(s)
Fibrosis , Enfermedades Pulmonares , Adenocarcinoma Bronquioloalveolar , Fibrosis Pulmonar Idiopática , Lesión Pulmonar Aguda , COVID-19 , Fibrosis Pulmonar , Enfermedad
12.
researchsquare; 2024.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3877193.v1

RESUMEN

Various cases of immune thrombocytopenic purpura (ITP) were reported among COVID-19-positive patients in the literature. We used the National Inpatient Sample (NIS) to evaluate the odds of ITP among COVID-19 patients in the United States between April and November 2020. Females (vs. Males), Whites (vs. other races), and the presence of multiple comorbidities such as chronic kidney disease, cirrhosis, prior stroke, HIV, obesity, cachexia, neoplasms, and autoimmune conditions showed higher odds of ITP. Meanwhile, those with diabetes and peripheral vascular disease and covered by private insurance (vs. Medicare) were less likely to experience ITP while being positive for the virus. Events of ITP also led to a higher mortality risk in COVID-19-positive patients.


Asunto(s)
Fibrosis , Enfermedades Vasculares Periféricas , Infecciones por VIH , Caquexia , Púrpura Trombocitopénica Idiopática , Diabetes Mellitus , Púrpura Trombocitopénica , Neoplasias , Obesidad , COVID-19 , Insuficiencia Renal Crónica , Accidente Cerebrovascular
13.
researchsquare; 2024.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3868352.v1

RESUMEN

Backgrounds : The management of lung complications, especially fibrosis, after coronavirus disease (COVID-19) pneumonia, is an important issue in the COVID-19 post-pandemic era. We aimed to investigate risk factors for pulmonary fibrosis development in patients with severe COVID-19 pneumonia.Methods Clinical and radiologic data were prospectively collected from 64 patients who required mechanical ventilation due to COVID-19 pneumonia and were enrolled from eight hospitals in South Korea. Fibrotic changes on chest computed tomography (CT) was evaluated by visual assessment, and extent of fibrosis (mixed disease score) was measured using automatic quantification system.Results Sixty-four patients were enrolled, and their mean age was 58.2 years (64.1% were males). On chest CT (median interval: 60 days [interquartile range, IQR; 41–78 days] from enrolment), 35 (54.7%) patients showed ≥ 3 fibrotic lesions. The most frequent fibrotic change was traction bronchiectasis (47 patients, 73.4%). Median extent of fibrosis measured by automatic quantification was 10.6% (IQR, 3.8–40.7%). In a multivariable Cox proportional hazard model, which included nine variables with a p-value of < 0.10 in an unadjusted analysis as well as age, sex, and body mass index, male sex (hazard ratio [HR], 3.01; 95% confidence interval [CI], 1.27–7.11) and higher initial sequential organ failure assessment (SOFA) score (HR, 1.18; 95% CI, 1.02–1.37) were independently associated with pulmonary fibrosis (≥ 3 fibrotic lesions).Conclusion Our data suggests that male gender and higher SOFA score at intensive care unit admission were associated with pulmonary fibrosis in patients with severe COVID-19 pneumonia requiring mechanical ventilation.


Asunto(s)
Fibrosis , Infecciones por Coronavirus , Enfermedades Pulmonares , Neumonía , Enfermedades Renales , COVID-19 , Fibrosis Pulmonar
14.
arxiv; 2023.
Preprint en Inglés | PREPRINT-ARXIV | ID: ppzbmed-2312.13752v2

RESUMEN

Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway trees remains prohibitively time-consuming. While significant efforts have been made towards enhancing airway modelling, current public-available datasets concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for prognosis, a strong airway-derived biomarker (Hazard ratio>1.5, p<0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.


Asunto(s)
Fibrosis , Fibrosis Pulmonar , COVID-19 , Enfermedades Pulmonares
15.
biorxiv; 2023.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2023.12.20.572494

RESUMEN

The most common cause of death due to COVID-19 remains respiratory failure. Yet, our understanding of the precise cellular and molecular changes underlying lung alveolar damage is limited. Here, we integrate single cell transcriptomic data of COVID-19 donor lungs with spatial transcriptomic data stratifying histopathological stages of diffuse alveolar damage (DAD). We identify changes in cellular composition across progressive DAD, including waves of molecularly distinct macrophages and depleted epithelial and endothelial populations throughout different types of tissue damage. Predicted markers of pathological states identify immunoregulatory signatures, including IFN-alpha and metallothionein signatures in early DAD, and fibrosis-related collagens in organised DAD. Furthermore, we predict a fibrinolytic shutdown via endothelial upregulation of SERPINE1/PAI-1. Cell-cell interaction analysis revealed macrophage-derived SPP1/osteopontin signalling as a key regulator during early DAD. These results provide the first comprehensive, spatially resolved atlas of DAD stages, highlighting the cellular mechanisms underlying pro-inflammatory and pro-fibrotic pathways across alveolar damage progression.


Asunto(s)
Fibrosis , Adenocarcinoma Bronquioloalveolar , COVID-19 , Insuficiencia Respiratoria
16.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.12.03.23299330

RESUMEN

Background: Previous studies indicate a protective role for SARS-CoV-2 vaccination against development of pulmonary post-acute sequelae of COVID (PASC). We compared clinical, imaging, histopathology and ultrastructural features of pulmonary PASC with and without prior vaccination in a consecutive cohort of 54 unvaccinated, 17 partially vaccinated and 28 fully vaccinated patients who presented with dyspnea on exertion after mild COVID-19 (without hospitalization). Methods: Patients underwent full clinical evaluation including autoantibody (ANA/ENA) serology, high-resolution computed tomography (HRCT), bronchioloalveolar lavage fluid (BAL) analysis and transbronchial biopsy followed by histopathological and ultrastructural analysis and SARS-CoV-2 immunohistochemistry. Results: While vaccinated patients were younger (p=0.0056), included more active smokers (p=0.0135) and a longer interval since infection (35 vs. 17 weeks, p=0.0002), dyspnea on exertion and impaired lung function were not different between vaccinated and unvaccinated patients. Ground glass opacities in HRCT and centrilobular fibrosis were more frequent in unvaccinated patients (p=0.0154 and p=0.0353), but presence of autoantibodies, BAL lymphocytosis and bronchiolitis were common findings in all groups. While vaccination against SARS-CoV-2 is associated with a longer time span between infection and consultation along with a reduced frequency of ground glass opacities and centrilobular fibrosis, impaired lung function, bronchiolitis and presence of autoantibodies are comparable between vaccinated and unvaccinated patients. Residual virus was not detected in lung tissue in all but 1 patient. Conclusion: While differences between the investigated groups with regard to age, smoking status and SARS-CoV-2 variants have to be taken into account, a proposed protective role of SARS-CoV-2 vaccination against pulmonary PASC is so far not fully explained by clinical and histopathology findings.


Asunto(s)
Fibrosis , Bronquiolitis , Enfermedades Pulmonares , Disnea , Linfocitosis , COVID-19
17.
biorxiv; 2023.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2023.12.01.569608

RESUMEN

RationaleThe role of the innate immune system in Idiopathic Pulmonary Fibrosis (IPF) remains poorly understood. However, a functional myeloid compartment is required to remove dying cells and cellular debris, and to mediate innate immune responses against pathogens. Aberrant macrophage activity has been described in patients with Post-acute sequelae of COVID fibrosis (PASC-F). Therefore, we examined the functional and synthetic properties of myeloid cells isolated from normal donor lung and lung explant tissue from both IPF and PASC-F patients and explored the effect of LTI-2355, a Caveolin Scaffolding Domain (CSD) peptide, on these cells. Methods & ResultsCD45+ myeloid cells isolated from lung explant tissue from IPF and PASC-F patients exhibited an impaired capacity to clear autologous dead cells and cellular debris. Uptake of pathogen-coated bioparticles was impaired in myeloid cells from both fibrotic patient groups independent of type of pathogen highlighting a cell intrinsic functional impairment. LTI-2355 improved the phagocytic activity of both IPF and PASC-F myeloid cells, and this improvement was paired with decreased pro-inflammatory and pro-fibrotic synthetic activity. LTI-2355 was also shown to primarily target CD206-expressing IPF and PASC-F myeloid cells. ConclusionsPrimary myeloid cells from IPF and PASC-F patients exhibit dysfunctional phagocytic and synthetic properties that are reversed by LTI-2355. Thus, these studies highlight an additional mechanism of action of a CSD peptide in the treatment of IPF and progressive fibrotic lung disease.


Asunto(s)
Fibrosis , Enfermedades Pulmonares , Fibrosis Pulmonar Idiopática
18.
biorxiv; 2023.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2023.10.03.560739

RESUMEN

Post-acute sequelae of SARS-CoV-2 infection (PASC) represents an urgent public health challenge, with its impact resonating in over 60 million individuals globally. While a growing body of evidence suggests that dysregulated immune reactions may be linked with PASC symptoms, most investigations have primarily centered around blood studies, with few focusing on samples derived from post-COVID affected tissues. Further, clinical studies alone often provide correlative insights rather than causal relationships. Thus, it is essential to compare clinical samples with relevant animal models and conduct functional experiments to truly understand the etiology of PASC. In this study, we have made comprehensive comparisons between bronchoalveolar lavage fluid (BAL) single-cell RNA sequencing (scRNAseq) data derived from clinical PASC samples and relevant PASC mouse models. This revealed a strong pro-fibrotic monocyte-derived macrophage response in respiratory PASC (R-PASC) in both humans and mice, and abnormal interactions between pulmonary macrophages and respiratory resident T cells. IFN-g emerged as a key node mediating the immune anomalies in R-PASC. Strikingly, neutralizing IFN-g post the resolution of acute infection reduced lung inflammation, tissue fibrosis, and improved pulmonary gas-exchange function in two mouse models of R-PASC. Our study underscores the importance of performing comparative analysis to understand the root cause of PASC for developing effective therapies.


Asunto(s)
COVID-19 , Neumonía , Fibrosis
19.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.09.08.23295024

RESUMEN

Linking clinical biomarkers and lung pathology still is necessary to understand COVID-19 pathogenesis and the basis of progression to lethal outcomes. Resolving these knowledge gaps enables optimal treatment approaches of severe COVID-19. We present an integrated analysis of longitudinal clinical parameters, blood biomarkers and lung pathology in COVID-19 patients from the Brazilian Amazon. We identified core signatures differentiating severe recovered patients and fatal cases with distinct disease trajectories. Progression to early death was characterized by rapid and intense endothelial and myeloid activation, presence of thrombi, mostly driven by SARS-CoV-2 + macrophages. Progression to late death was associated with systemic cytotoxicity, interferon and Th17 signatures and fibrosis, apoptosis, and abundant SARS-CoV-2 + epithelial cells in the lung. Progression to recovery was associated with pro-lymphogenic and Th2-mediated responses. Integration of antemortem clinical and blood biomarkers with post-mortem lung-specific signatures defined predictors of disease progression, identifying potential targets for more precise and effective treatments.


Asunto(s)
Fibrosis , Trombosis , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Muerte , COVID-19
20.
biorxiv; 2023.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2023.08.26.554935

RESUMEN

In this study, we generated self-assembly cardiac organoids (COs) from human pluripotent stem cells by dual-phase modulation of Wnt/{beta}-catenin pathway, utilizing CHIR99021 and IWR-1-endo. The resulting COs exhibited a diverse array of cardiac-specific cell lineages, cardiac cavity-like structures and demonstrated the capacity of spontaneous beating and vascularization in vitro. We further employed these complex and functional COs to replicate conditions akin to human myocardial infarction and SARS-CoV-2 induced fibrosis. These models accurately captured the pathological characteristics of these diseases, in both in vitro and in vivo settings. In addition, we transplanted the COs into NOD SCID mice and observed that they survived and exhibited ongoing expansion in vivo. Impressively, over a span of 75-day transplantation, these COs not only established blood vessel-like structures but also integrated with the host mice's vascular system. It is noteworthy that these COs developed to a size of approximately 8 mm in diameter, slightly surpassing the dimensions of the mouse heart. This innovative research highlighted the potential of our COs as a promising avenue for cardiovascular research and therapeutic exploration.


Asunto(s)
Fibrosis , Infarto del Miocardio , Cardiopatías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA